Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present power spectra of the cosmic microwave background (CMB) anisotropy in temperature and polarization, measured from the Data Release 6 maps made from Atacama Cosmology Telescope (ACT) data. These cover 19,000 deg2of sky in bands centered at 98, 150 and 220 GHz, with white noise levels three times lower thanPlanckin polarization. We find that the ACT angular power spectra estimated over 10,000 deg2, and measured to arcminute scales in TT, TE and EE, are well fit by the sum of CMB and foregrounds, where the CMB spectra are described by the ΛCDM model. Combining ACT with larger-scalePlanckdata, the joint P-ACT dataset provides tight limits on the ingredients, expansion rate, and initial conditions of the universe. We find similar constraining power, and consistent results, from either thePlanckpower spectra or from ACT combined withWMAPdata, as well as from either temperature or polarization in the joint P-ACT dataset. When combined with CMB lensing from ACT andPlanck, and baryon acoustic oscillation data from the Dark Energy Spectroscopic Instrument (DESI DR1), we measure a baryon density of Ωbh2= 0.0226 ± 0.0001, a cold dark matter density of Ωch2= 0.118 ± 0.001, a Hubble constant ofH0= 68.22 ± 0.36 km/s/Mpc, a spectral index ofns= 0.974 ± 0.003, and an amplitude of density fluctuations ofσ8= 0.813 ± 0.005. Including the DESI DR2 data tightens the Hubble constant toH0= 68.43 ± 0.27 km/s/Mpc; ΛCDM parameters agree between the P-ACT and DESI DR2 data at the 1.6σlevel. We find no evidence for excess lensing in the power spectrum, and no departure from spatial flatness. The contribution from Sunyaev-Zel'dovich (SZ) anisotropy is detected at high significance; we find evidence for a tilt with suppressed small-scale power compared to our baseline SZ template spectrum, consistent with hydrodynamical simulations with feedback.more » « lessFree, publicly-accessible full text available November 1, 2026
-
Abstract We present Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) maps of the Cosmic Microwave Background temperature and polarization anisotropy at arcminute resolution over three frequency bands centered on 98, 150 and 220 GHz. The maps are based on data collected with the AdvancedACT camera over the period 2017–2022 and cover 19,000 square degrees with a median combined depth of 10 μK arcmin. We describe the instrument, mapmaking and map properties and illustrate them with a number of figures and tables. The ACT DR6 maps and derived products are available on LAMBDA athttps://lambda.gsfc.nasa.gov/product/act/actadv_prod_table.html. We also provide an interactive web atlas athttps://phy-act1.princeton.edu/public/snaess/actpol/dr6/atlasand HiPS data sets in Aladin (e.g.https://alasky.cds.unistra.fr/ACT/DR4DR6/color_CMB).more » « lessFree, publicly-accessible full text available November 1, 2026
-
Abstract We use new cosmic microwave background (CMB) primary temperature and polarization anisotropy measurements from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) to test foundational assumptions of the standard cosmological model, ΛCDM, and set constraints on extensions to it. We derive constraints from the ACT DR6 power spectra alone, as well as in combination with legacy data from thePlanckmission. To break geometric degeneracies, we include ACT andPlanckCMB lensing data and baryon acoustic oscillation data from DESI Year-1. To test the dependence of our results on non-ACT data, we also explore combinations replacingPlanckwithWMAPand DESI with BOSS, and further add supernovae measurements from Pantheon+ for models that affect the late-time expansion history. We verify the near-scale-invariance (running of the spectral indexdns/dlnk= 0.0062 ± 0.0052) and adiabaticity of the primordial perturbations. Neutrino properties are consistent with Standard Model predictions: we find no evidence for new light, relativistic species that are free-streaming (Neff= 2.86 ± 0.13, which combined with astrophysical measurements of primordial helium and deuterium abundances becomesNeff= 2.89 ± 0.11), for non-zero neutrino masses (∑mν< 0.089 eV at 95% CL), or for neutrino self-interactions. We also find no evidence for self-interacting dark radiation (Nidr< 0.134), or for early-universe variation of fundamental constants, including the fine-structure constant (αEM/αEM,0= 1.0043 ± 0.0017) and the electron mass (me/me,0= 1.0063 ± 0.0056). Our data are consistent with standard big bang nucleosynthesis (we findYp= 0.2312 ± 0.0092), theCOBE/FIRAS-inferred CMB temperature (we findTCMB= 2.698 ± 0.016 K), a dark matter component that is collisionless and with only a small fraction allowed as axion-like particles, a cosmological constant (w= -0.986 ± 0.025), and the late-time growth rate predicted by general relativity (γ= 0.663 ± 0.052). We find no statistically significant preference for a departure from the baseline ΛCDM model. In fits to models invoking early dark energy, primordial magnetic fields, or an arbitrary modified recombination history, we findH0= 69.9+0.8-1.5, 69.1 ± 0.5, or 69.6 ± 1.0 km/s/Mpc, respectively; using BOSS instead of DESI BAO data reduces the central values of these constraints by 1–1.5 km/s/Mpc while only slightly increasing the error bars. In general, models introduced to increase the Hubble constant or to decrease the amplitude of density fluctuations inferred from the primary CMB are not favored over ΛCDM by our data.more » « lessFree, publicly-accessible full text available November 1, 2026
-
Abstract We present cosmological constraints from a gravitational lensing mass map covering 9400 deg2reconstructed from measurements of the cosmic microwave background (CMB) made by the Atacama Cosmology Telescope (ACT) from 2017 to 2021. In combination with measurements of baryon acoustic oscillations and big bang nucleosynthesis, we obtain the clustering amplitudeσ8= 0.819 ± 0.015 at 1.8% precision, , and the Hubble constantH0= (68.3 ± 1.1) km s−1Mpc−1at 1.6% precision. A joint constraint with Planck CMB lensing yieldsσ8= 0.812 ± 0.013, , andH0= (68.1 ± 1.0) km s−1Mpc−1. These measurements agree with ΛCDM extrapolations from the CMB anisotropies measured by Planck. We revisit constraints from the KiDS, DES, and HSC galaxy surveys with a uniform set of assumptions and find thatS8from all three are lower than that from ACT+Planck lensing by levels ranging from 1.7σto 2.1σ. This motivates further measurements and comparison, not just between the CMB anisotropies and galaxy lensing but also between CMB lensing probingz∼ 0.5–5 on mostly linear scales and galaxy lensing atz∼ 0.5 on smaller scales. We combine with CMB anisotropies to constrain extensions of ΛCDM, limiting neutrino masses to ∑mν< 0.13 eV (95% c.l.), for example. We describe the mass map and related data products that will enable a wide array of cross-correlation science. Our results provide independent confirmation that the universe is spatially flat, conforms with general relativity, and is described remarkably well by the ΛCDM model, while paving a promising path for neutrino physics with lensing from upcoming ground-based CMB surveys.more » « less
-
Abstract We present new measurements of cosmic microwave background (CMB) lensing over 9400 deg2of the sky. These lensing measurements are derived from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) CMB data set, which consists of five seasons of ACT CMB temperature and polarization observations. We determine the amplitude of the CMB lensing power spectrum at 2.3% precision (43σsignificance) using a novel pipeline that minimizes sensitivity to foregrounds and to noise properties. To ensure that our results are robust, we analyze an extensive set of null tests, consistency tests, and systematic error estimates and employ a blinded analysis framework. Our CMB lensing power spectrum measurement provides constraints on the amplitude of cosmic structure that do not depend on Planck or galaxy survey data, thus giving independent information about large-scale structure growth and potential tensions in structure measurements. The baseline spectrum is well fit by a lensing amplitude ofAlens= 1.013 ± 0.023 relative to the Planck 2018 CMB power spectra best-fit ΛCDM model andAlens= 1.005 ± 0.023 relative to the ACT DR4 + WMAP best-fit model. From our lensing power spectrum measurement, we derive constraints on the parameter combination of from ACT DR6 CMB lensing alone and when combining ACT DR6 and PlanckNPIPECMB lensing power spectra. These results are in excellent agreement with ΛCDM model constraints from Planck or ACT DR4 + WMAP CMB power spectrum measurements. Our lensing measurements from redshiftsz∼ 0.5–5 are thus fully consistent with ΛCDM structure growth predictions based on CMB anisotropies probing primarilyz∼ 1100. We find no evidence for a suppression of the amplitude of cosmic structure at low redshifts.more » « less
-
ABSTRACT We present new Gemini/GMOS optical spectroscopy of 16 extreme variability quasars (EVQs) that dimmed by more than 1.5 mag in the g band between the Sloan Digital Sky Survey (SDSS) and the Dark Energy Survey epochs (separated by a few years in the quasar rest frame). These EVQs are selected from quasars in the SDSS Stripe 82 region, covering a redshift range of 0.5 < z < 2.1. Nearly half of these EVQs brightened significantly (by more than 0.5 mag in the g band) in a few years after reaching their previous faintest state, and some EVQs showed rapid (non-blazar) variations of greater than 1–2 mag on time-scales of only months. To increase sample statistics, we use a supplemental sample of 33 EVQs with multi-epoch spectra from SDSS that cover the broad Mg ii λ2798 line. Leveraging on the large dynamic range in continuum variability between the multi-epoch spectra, we explore the associated variations in the broad Mg ii line, whose variability properties have not been well studied before. The broad Mg ii flux varies in the same direction as the continuum flux, albeit with a smaller amplitude, which indicates at least some portion of Mg ii is reverberating to continuum changes. However, the full width at half-maximum (FWHM) of Mg ii does not vary accordingly as continuum changes for most objects in the sample, in contrast to the case of the broad Balmer lines. Using the width of broad Mg ii to estimate the black hole mass with single epoch spectra therefore introduces a luminosity-dependent bias.more » « less
-
null (Ed.)ABSTRACT Measurements of large-scale structure are interpreted using theoretical predictions for the matter distribution, including potential impacts of baryonic physics. We constrain the feedback strength of baryons jointly with cosmology using weak lensing and galaxy clustering observables (3 × 2pt) of Dark Energy Survey (DES) Year 1 data in combination with external information from baryon acoustic oscillations (BAO) and Planck cosmic microwave background polarization. Our baryon modelling is informed by a set of hydrodynamical simulations that span a variety of baryon scenarios; we span this space via a Principal Component (PC) analysis of the summary statistics extracted from these simulations. We show that at the level of DES Y1 constraining power, one PC is sufficient to describe the variation of baryonic effects in the observables, and the first PC amplitude (Q1) generally reflects the strength of baryon feedback. With the upper limit of Q1 prior being bound by the Illustris feedback scenarios, we reach $$\sim 20{{\ \rm per\ cent}}$$ improvement in the constraint of $$S_8=\sigma _8(\Omega _{\rm m}/0.3)^{0.5}=0.788^{+0.018}_{-0.021}$$ compared to the original DES 3 × 2pt analysis. This gain is driven by the inclusion of small-scale cosmic shear information down to 2.5 arcmin, which was excluded in previous DES analyses that did not model baryonic physics. We obtain $$S_8=0.781^{+0.014}_{-0.015}$$ for the combined DES Y1+Planck EE+BAO analysis with a non-informative Q1 prior. In terms of the baryon constraints, we measure $$Q_1=1.14^{+2.20}_{-2.80}$$ for DES Y1 only and $$Q_1=1.42^{+1.63}_{-1.48}$$ for DESY1+Planck EE+BAO, allowing us to exclude one of the most extreme AGN feedback hydrodynamical scenario at more than 2σ.more » « less
-
null (Ed.)Abstract Binary supermassive black holes (BSBHs) are expected to be a generic byproduct from hierarchical galaxy formation. The final coalescence of BSBHs is thought to be the loudest gravitational wave (GW) siren, yet no confirmed BSBH is known in the GW-dominated regime. While periodic quasars have been proposed as BSBH candidates, the physical origin of the periodicity has been largely uncertain. Here we report discovery of a periodicity (P=1607±7 days) at 99.95% significance (with a global p-value of ∼10−3 accounting for the look elsewhere effect) in the optical light curves of a redshift 1.53 quasar, SDSS J025214.67−002813.7. Combining archival Sloan Digital Sky Survey data with new, sensitive imaging from the Dark Energy Survey, the total ∼20-yr time baseline spans ∼4.6 cycles of the observed 4.4-yr (restframe 1.7-yr) periodicity. The light curves are best fit by a bursty model predicted by hydrodynamic simulations of circumbinary accretion disks. The periodicity is likely caused by accretion rate modulation by a milli-parsec BSBH emitting GWs, dynamically coupled to the circumbinary accretion disk. A bursty hydrodynamic variability model is statistically preferred over a smooth, sinusoidal model expected from relativistic Doppler boost, a kinematic effect proposed for PG1302−102. Furthermore, the frequency dependence of the variability amplitudes disfavors Doppler boost, lending independent support to the circumbinary accretion variability hypothesis. Given our detection rate of one BSBH candidate from circumbinary accretion variability out of 625 quasars, it suggests that future large, sensitive synoptic surveys such as the Vera C. Rubin Observatory Legacy Survey of Space and Time may be able to detect hundreds to thousands of candidate BSBHs from circumbinary accretion with direct implications for Laser Interferometer Space Antenna.more » « less
An official website of the United States government
